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LIFT HYSTERESIS AT STALL AS AN UNSTEADY BOUNDARY-LAYER PHENOMENON !

By FraNrLIN K. MoORE

SUMMARY

Analysis of rotating stall of compressor blade rows requires
specification of a dynamic lift curve for the airfoil section at or
near stall, presumably including the effect of Lift hysteresis.
Consideration of the Magnus lift of a rotating cylinder suggests
performing an unsteady boundary-layer calculation o find the
movement of the separation points of an airfoil fized in @ stream
of variable incidence. Then consideration of the shedding of
vorticity inlo the wake should yield an estimate of lift increment
proportional to time rate of change of angle of attack. This
increment is the amplitude of the hysteresis loop.

An approzimate analysis is carried out according to the
Jforegoing ideas for a 6:1 elliptic airfoil at the angle of attack
Jor mazimum Uft. The assumption of small perturbations
Jrom maximum lift 18 made, permitting neglect of distribuled
vorticity in the wake. The calculated hysteresis loop is counter-
clockwise. The computed increment of lLift coefficient is quite
large, indicating appreciable unsteady lift hysteresis for a very
small reduced frequency of the flow oscillation. It i3 assumed
that to the order of this analysis, the wake begins at the separation
point defined by zero shear. This assumption is quesitonable
for unsteady flow.

Finally, a discussion of the forms of hysteresis loops s
presented; and, for small reduced frequency of oscillation, it s
concluded that the concept of a viscous “time lag’’ 18 appropriate
only for harmonic variation of angle of attack with time at
mean conditions other than maximum lift.

INTRODUCTION

The phenomena of “stall flutter” and ‘rotating stall,”
which may appear in an axial-flow compressor, both involve
fluctuations in flow about blades operating near their aero-
dynamic stall point; that is, at an average flow incidence
angle near that corresponding to maximum blade lift.

The analysis of stall flutter has been held back by uncer-
tainty as to the dependence of airfoil lift and moment on a
fluctuating incidence angle near stall. In reference 1 there
was proposed an assumption of the linear aerodynamic force
and moment relations appropriate to steady flow at a small
angle of incidence, modified by the further assumption that,
as the airfoil oscillates, the forces and moments lag behind
the angular displacement of the airfoil, owing to viscous
effects. Such a time lag represents an unsteady hysteresis

which may provide cyclic work to amplify or maintain
flutter. Perhaps the first experimental study of lift hysteresis
was that of Farren (vef. 2). Halfman, Johnson, and Haley
(ref. 3) and Schnittger (ref. 4) have more recently studied
aerodynamic hysteresis experimentally and have presented
empirical analyses of their results.

An analysis of rotating stall (e. g., that of Sears, ref. 5)
also requires specification of a dynamic lift-incidence relation
(or the equivalent, as in the study of Emmons, Pearson, and
Grant, ref. 6, and in Marble’s analysis, ref. 7). Sears has
adopted Mendelson’s phase-lag hypothesis, and this phase
angle is an undetermined parameter of his analysis.

The concept of viscous time lag is not entirely satisfactory,
however, partly because the phenomenon itself is un-
explained, but chiefly because the concept obviously cannot
describe g lift-hysteresis loop which might occur at a nominal
condition of maximum lift.

The phenomenon of aerodynamic hysteresis presumably
depends, at least in part, on the airfoil boundary layer.
Also, in this study, hysteresis is taken to be a fundamentally
unsteady phenomenon, not explainable by consideration of
the steady or quasi-steady boundary layer.? In the present
report, consideration is given to the incompressible flow field
about a single airfoil fixed in a flow of oscillating incidence,
under the assumption of an unsteady but nearly quasi-
steady ® laminar boundary layer. (This sort of boundary
layer is analyzed in ref. 8.) The analysis of this flow field
is undertaken in order to gain an understanding of the cause
of lift hysteresis and to describe its form and (crudely) its
magnitude for a special airfoil at maximum lift.

The basic quasi-steady flow to be used in the present
analysis is provided by Howarth’s analysis (ref. 9) of the
way the laminar boundary layer (and, hence, circulation)
about an infinite elliptic cylinder depends on angle of attack,
applied at a condition of maximum lift. In reference 9,
assumptions are made under which the result becomes
quantitatively inaccurate, though both the approach and
the result are qualitatively instructive. The same limita-
tions affect the present analysis,

Holding the airfoil fixed while the flow direction oscillates,
simulates the accepted picture of rotating stall, in which
successive blade passages stall progressively along a per-
fectly rigid cascade. The somewhat different case of an

1 Supersedes NACA TN 38571, “Lift Hysteresis at Stall as an Unsteady Boundary-Layer Phenomenon,” by P ranklin XK. Moore, 1955.
3 Afrfolls with 1ift curves that break sharply at stall may show lift hysteresis in steady flow, a phenomen distinet from that under study herein.
In a quasl-steady flow, quantities vary slowly enough so that steady-state results apply at each instant of time although slight varlations are permitted from one instant to the next.
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oscillating airfoil in & uniform stream, which is appropriate
to the stall flutter problem, is not analyzed in this report.
However, there is an example in the “oscillating airfoil”
category which illustrates the considerations underlying the
present study; namely, the rotating circular cylinder in a
uniform stream. If a circular cylinder is fixed in & uniform
stream, it, of course, experiences no lift. Further, if it is
given an angular displacement, its lift does not change, but
remains zero. Thus, this degenerate “airfoil” may be said
to be in a stall condition, at maximum lift, in fact. Now, if
the circular cylinder is given a constant angular velocity of

rotation about its axis, then a circulation develops and an -

aerodynamic force (Magnus force) transverse to the flow
direction is exerted. If the stream velocity is from left to
right and the rotation is clockwise, then the force is upward
(lift). If the rotation is counterclockwise, the force is
downward.

This phenomenon is explained (ref. 10, par. 27) by con-
sideration of the boundary layer. In the case of clockwise
rotation, the upper surface of the cylinder is moving with,
and the bottom surface against, the flow. Consequently,
if circulation remains zero, the boundary layer separates
later on the top and sooner on the bottom than is the case
when the cylinder is not rotating. On the top, later separa-
tion means that the velocity outside the boundary layer is
lower at separation. Now, the separation point signifies
the beginning of a wake. Therefore, the clockwise vorticity
shed into the wake, being proportional to the local outer
velocity, is less on the top, and the counterclockwise vorticity
shed at the bottom separation is greater, than in the case of
no rotation.

Therefore, owing to clockwise rotation, a net increase of
counterclockwise vorticity is shed. By the law of con-
servation of circulation, the circulation therefore cannot be
zero, and a clockwise circulation must develop about the
airfoil to compensate for the shed vorticity. According to
classical hydrodynamics, this circulation results in lift.

If, instead of rotating steadily, the cylinder undergoes
8 rotational oscillation, the same considerations apply, if the
reduced frequency of oscillation is small. In that case, the
oscillating lift is proportional to the instantaneous velocity
of rotation. Thus, when the “angle of attack’ of the cylinder
is inereasing, there is positive lift, and when the angle is
decreasing, there is mnegative lift; over a complete cycle,
the curve of lift against angle of attack would be a loop.

Therefore, the circular cylinder undergoing a rotational
oscillation exhibits lift hysteresis, by reason of the response
of the boundary layer to the movement of the surface.
In the more complicated problem of a noncircular cylinder,
or girfoil, similar considerations may be expected to apply.
Of course, in the airfoil problem contemplated in the present
study, the acceleration of the flow field may be expected
to provide an additional component of pressure lift, de-
rivable from consideration of Kelvin’s impulse.

PRELIMINARY CONSIDERATIONS

STATEMENT OF PROBLEM

Consideration is given to the lift of an isolated airfoil in
the form of an infinite elliptic cylinder with a semichord
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I and a thickness ratio 8, at a stalling angle of attack a to
a stream of velocity U (see fig. 1). A full list of notation
is provided in the appendix.

While the airfoil position and the magnitude of U are
held fixed, the angle of attack « is permitted to vary with
time. Such a flow may be constructed by allowing a moving
source Q to approach an airfoil fixed in an otherwise uniform

/]
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:6:1 Ellipse

Figure 1.—Notation and coordinate system for elliptic airfoll at
angle of attack.
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Sketoh (a) Airfoil and source.

stream, the direction of approach being normal to the stream
direction, as in sketch (a):

As long as &, the instantaneous distance from @ to the airfoil,
is much greater than [, the airfoil finds itself effectively in
a uniform stream of incidence

Q
—q®
e=a®tean

and of magnitude differing from U only to second order in
Q/27hU. The rate of change of angle of attack is

. @
=0 (=5

where the dot signifies differentiation with respect to time.

The foregoing model applies qualitatively to the phenomenon

of rotating compressor stall, if the moving source  is taken

to represent the approach of a flow blockage propagating

along a cascade.

The present analysis will be carried out as though & is
a small constant. Actually, if & is quite small, and highor
derivatives such as & are negligibly small, the analysis will
be correct at each instant using the appropriate instantan-
eous value of & (This is the first refinement over the quasi-
steady assumption which uses instantaneous values of «
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itself; or for oscillatory «, the linear term of a Taylor series
in reduced frequency.) It is clear that the solution of the
problem to order & provides a measure of hysteresis: Suppose
an expression for lift is obtained in the form

C,=0P +AaCy +aCrt . . .

The first two terms are the quasi-steady contributions.
The term in & provides that, if « is in the process of in-
creasing with time, then the lift is higher (assuming C;, posi-
tive) than the quasi-steady value. The converse is true if
is decreasing. Thus, if a performs an harmonic oscillation,
the lift curve is a loop lying to either side of the quasi-steady
curve of width proportional to the frequency of oscillation.

In order that the present analysis bear on the question of
rotating stall, nominal angle of attack must be selected for
which the airfoil is in a stalled condition. Maximum lift is
the most simply described stall condition. Accordingly,
the nominal angle of attack is chosen as that for which the
lift is & maximum. This selection is made for two muore
compelling reasons:

(1) The result will tend to isolate the effect of hysteresis,
inasmuch as no quesi-steady change in lift results from change
in o« about the maximum lift value. Of course, if lift hy-
steresis i8 found under a mean condition of maximum lift,
then the idea of viscous time lag will thereby be shown to
be inappropriate.

(2) Any other assumption would lead to great theoretical
complication. The analysis is to be & perturbation of quasi-
steady flow. If, at the nominal angle of attack, change in «
resulted in a quasi-steady change in circulation, then, to
the order of the present analysis, induced wake effects would
require consideration.

POTENTIAL FLOW

Outside the boundary layer of the ellipse, irrotational
incompressible flow is assumed. At each instant* the ve-
locity potential on the surface of the ellipse is (ref. 11, par.
71)

r
¢=1U(1+) cos (r—a)—5 )
where the surface is defined by
z=2l cos ; y=Plsin ¢ 2)

Along the surface, measuring ¢ clockwise,

a¢ 2p 7
T onds

£g£=—(sin2 1+6* cos® ) H= —% ®)

g=pi=%| a-+8)sin —)+5277 | @

At this juncture, the condition of maximum lift has not been
imposed, and the circulation T is left unspecified. Of
course, both @ and T' may vary with time.

The foregoing description of the potential velocity dis-
tribution is made on the assumption that the boundary layer
is negligibly thin everywhere on the ellipse. This assumption
is usually quite proper ahead of the separation points. The
assumption that the wake aft of separation does not import-
antly affect the potential flow is not proper; certainly, this
assumption is quantitatively poor at maximum lift, especi-
ally if the potential flow is used to compute separation point.
However, the results obtained on the basis of this assumption
are expected to have qualitative validity.

BOUNDARY-LAYER ANALYSIS

QUASI.STEADY BOUNDARY LAYER

As a basis for subsequent calculation of unsteady effects,
the quasi-steady laminar boundary layer on the ellipse may be
approximately determined by the Karm#n-Pohlhausen inte-
gral method, as improved by Holstein and Bohlen (see ref.
12, ch. XII). The differential equation is

7 (58)

subject to the initial condition at the stagnation point
(¢=0):
ke=0.0770 (5b)

where Z=§*U/vl, § being the momentum thickness. The
function F (x) is tabulated in reference 12.

Determination of Z and I' at maximum lift.—Given the
velocity distribution g, the growth of the boundary layer may
be computed from equations (5), the calculation proceeding
until both the separation points (¥ and g, fig. 1) are reached,
for which (x);=(x);=—0.1567.

In the present problem the potential velocity distribution
has not yet been fully prescribed, since I' remains unknown.
Suppose that, for a given @, a value of T'is assumed, and the
boundary-layer calculation is carried out (ref. 9). Then, at
the top separation point, clockwise vorticity is shed into the
wake at the rate

f w2 dn=L (s ®

while at 5, counterclockwise vorticity is shed at the rate

:i'- (u)s. Now, if (uy), differs from (u,);, there is a net change
of circulation in the wake, which is impossible in steady flow.
Therefore, new trial values of T must be assumed until the
particular value of I is determined for which the solution of
equations (5) yields separation points for which (u;);= (u,);.

The foregoing procedure must be carried out for each of a
number of angles of attack in order to determine the values of
o« and T at maximum lift. In reference 9, Howarth per-
formed these calculations for —=1/6 and determined a the-
oretical lift curve. The maximum value of I'/27UI was found
to be 0.0761 at an angle of attack «=7°. His complete dis-
tribution of Z at this condition is not presented in reference 9.

{The quasl-steady assumption applies preclsely for the caleulation of the unsteady veloclty potential.
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Accordingly, the calculation has been repeated by integrat-
ing equation (5a) in the form

L AWFW; k=02 (72)
where
A=—F atn=—% (7b)
and, from equation (4),
q=% %sin (7,—7°)+0.o761] €)

At the forward stagnation point where ¢=0, 7=190.74°,
and the initial condition is, from equations (5), (6), and (72),

Zo=0.0770/a,=0.00407 (7¢)

The solution was obtained using a step-by-step method in
which a parabola is passed through two known values and the

o

>

Thickness parameler, 2
o

Figure 2.—Distribution of thickness parameter Z around ellipse.

Coordinate on surface of ellipse, %, deg

next unknown value of dZ/dy,integrating to find Z in terms of
the unknown dZ/dn, then applying equation (7a) at the un-
known point to solve for dZ/dy. Two starting values were
found from a Taylor series about .. The step sizein 5 was 10°
except near the stagnation and separation point where finer
spacing was used. The solution of Z is shown in figure 2 and
in table I. The separation points, for which x=—0.1567,
occurred at y=80.0° and 340.83°. Of course, ¢ should be
the same at 3 and 8. The difference cited in the table indi-
cates the degree of error present in the calculations.

Determination of 3Z/da.—For subsequent use in the
unsteady equations, it is necessary to know the rate of
change of Z with « in quasi-steady flow. At maximum lift,
when « is changed, the quasi-steady boundary layer changes,
and the locations of the separation points are changed. Of
course, the velocities at 8 and § must remain equal, because
OT/0a=0 at maximum lift, by definition.

Differentiating equation (7a) yields

dz, )
d—n=B(ﬂ)Za+ b(n) (9a)
where
BE%F'(K)

(90)

‘

_ 4 (%apy L '>
be= A(qF—I— Lerpr

The initial condition for Z, at o is determined by specifying
that dZ./dn must be finite there; from equations (9a) and
(9b),

(Za)o=(@"q—§-—?i*1§)o= —0.00660 (9c)

In equations (9) all quantities are to be evaluated at the
condition of maximum lift; the appropriate superscript (0)

16

N

w
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Function of boundary-layer momentum thickness,
Za
H

I 2 240 280 320 360
Coordinate on surface of ellipse, 7, deg

8o 120

Fiaure 3.—Distribution of derivative Z, around ellipse.

is omitted for brevity. Of course, for purposes of finding
¢« 80d ¢, In equations (9), the angle of attack of 7° should
be replaced by « in equation (8) and set equal to 7° again,
subsequent to differentiation. Equations (9) have been
integrated to yield Z., by the same method as described for
finding Z, and the result is shown in figure 3 and in table I.

UNSTEADY BOUNDARY LAYER

The next step in the analysis is to determine the depend-
ence of the boundary layer on the angular velocity &, as-
sumed small. To this order of approximeation, equation (8)
describing the potential flow must be modified to include the
possibility of a contribution to circulation in proportion to
& (or, in dimensionless form, e=al/U), as follows:

qs’%z:.% [% sin (n-—7°)+0.0761+‘)’e:| (10)
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The coefficient of circulation hysteresis vy must be found from
o condition of vorticity shedding at the separation points of
the unsteady boundary layer. The contribution to lift
proportional to « then follows. Determination of the proper
vorticity-shedding condition will be discussed in a subse-
quent section.

The unsteady form of the Kfrman momentum equation
(see ref, 12) is

T

;"‘ ——(20—!—5*)%1 bul =3 (’ul'S *) (1)

Steady equations (5a) and (7a) are obtained from equation
(11) by omitting the term on the right side. An iteration
procedure might then be adopted: The guasi-steady 6* can
be substituted into the right side of equation (11), and a
new solution obtained, to include first-order unsteady
effects, Using the definitions of reference 12, and writing
the time derivative in equation (11) as

b% w8 =a Z)Ea (u18%) (12)

there is found, corresponding to equation (5a),

dZ F(x) qa Za | f1
g —2 = f1Z 22 +ﬁ Ka) (13)

The function f;(x) is tabulated in reference 12, and ¢ is given
by equation (10). Again, for purposes of finding ¢, and
Qay, the angle 7° in equation (10) should temporarily be
replaced by «.

Instead of the indicated iteration, in the present study
the equivalent procedure is adopted of finding the coeffi-
cients of the expansion

Z=Z94+AaZ+-eZ 4 . . .

The cocfficients Z® and Z, have already been found (egs. (7)
and (9) and figs. 2 and 3). The derivative Z, remains to
be found. Differentiating equation (13) and noting that
Ka=QsZa+QaaZy

dz.
ds

=F'(x)%z,+F'%z—ﬂs—

21281 2oy B (024 0u2)| (10

In cquation (14) and hereinafter, evaluation of quantities
in the steady state at maximum lift is to be understood, and
the superseript (0) is omitted for brevity.

It is impossible to ensure a finite value of dZ,/ds at the
stagnation point because of the second-order pole
—2f1Z¢./g*. The physical reason for this result is the
fact that, at the stagnation point of a certain instant, the
boundary-layer velocity profile will not vanish, as in steady
flow, but rather will respond to the instantaneous acceleration
e more promptly than the outer potential flow. A profile
of magnitude e may thus be expected, vanishing in the outer
stream as well as the wall as shown in sketch (b):

Therefore, the definition of momentum thickness

Baf E(1—E dy
o U U

shows that, if the velocity « in the boundary layer has a
part proportional to %, and a part proportional to ¢ then
the part of ¢ (and hence of Z=¢U/vl) which is proportional
to e must have a simple pole in %,. Actually, of course, the
quantity 6 is inappropriate for defining a thickness of a
profile of the type shown in sketch (b), and the appearance
of a pole in 6 simply indicates this lack of physical significance.

/

/

Boundary-loyer
profile-~

-~ Stagnatien point

Sketch (b) Nose of airfoil.

The foregoing considerations suggest that a new variable
W be defined to replace Z.:

Substituting equation (15) into equation (14) yields

@_g: (+ P+ ZF' g~ &

292 L1 Lol 2ot eu2)| 08)
In order that dW/ds be finite at the stagnation point, the
two poles on the right side of equation (16) must cancel,
yielding the initial condition

W"_[(lzfg'q)aq.]

——0.001015 @
where the numerical value is obtained using equations (3),
(7¢), and (10), and the tables of reference 2. Inasmuch as
¢.=v/R (eq. (10)), the function W may be split into two
parts, as follows:

We=X+~Y (18)

so that (changing to 5 as independent variable) equations
(18) and (17) provide

aX

=CmX+e(n) (19a)
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where
Cln)=Q1+F" —qq—
7 7 (19b)
_ ' a« 1
o) =21, RZ | Lt ol (0t g2 |
and
Xo=—0.001015 (19¢)
%7=C'(n)Y+d(n) (202)
where - 2
d(x) EE—ZF ’ -IT; (20b)
and
Yo=0 (20c)

Equations (19b) and (20b) are evaluated using the solutions
for Z and Z,, the tables of reference 12, and equations (3)
and (10).

Solutions of equations (19) and (20), obtained by the
method used to find Z, are presented in figures 4 and 5 and
table I.

O

Unsteady boundary-layer function, X

Coordinate on surface of ellipse, 7, deg
Figure 4.—Distribution of parameter X of unsteady boundary layer.
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Unsteady boundary-layer function, ¥

240 280 320 360
Coordinate on surfoce of ellipse, 7, deg

Fiavre 5.—Distribution of parameter Y of unsteady boundary layer.
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DETERMINATION OF LIFT

UNSTEADY BALANCE OF SHED VORTICITY

In order to determine the unsteady pressure lift, the
coefficient v (eq. (10)) must be determined. In steady flow
(see the discussion accompanying eq. (6)), the circulation
T was obtained by requiring that vorticity be shed in equal
and opposite amounts at the two separation points.

In the present unsteady problem, the net rate of vorticity
appearance in the wake must vanish, not only in the quasi-
steady approximation, but to order « as well, in view of the
assumption that the quasi-steady circulation is maximum,
By the classical theorem concerning constancy of circula-
tion, any net rate of discharge of vorticity into the wake
must be balanced by a rate of increase of circulation about
the body. If the airfoil is nominally at maximum lift,
then the circulation terms (eq. (10)), to order e=al/U, are

0.0761 e

The rate of increase of this expression is at most of order
a, and therefore there cannot be any net discharge of vor-
ticity to order a.

If the airfoil were not at maximum lift, then the expression
for circulation would contain & term proportional to Ac,
which would change at the rate &, and would have to be
balanced by a net rate of vorticity discharge of order «.
In turn, this distribution of circulation in the wake would
induce further modifications of the potential flow. Therefore,
the assumption of maximum lift permits the neglect of the
induced effects of distributed circulation in the wake.

Movement of separation points.—In order to effect &
balance (to order &) of vorticity shed at the separation
points, the movements of the separation points must be
taken into account. The position of the top separation point
& may be written

=@+ A (g—z ;+e (2—2)!7+. .. (21)

The coefficient (5—32)_ is obtained from the quasi-steady

solution:
At separation (x=—0.1567),

(5o~

From equations (7),

(5o

Pa) 1 35« .

b_:7= —%7 (Zg,,,-I—Z,,g,,—I—,]TI% sin 217) (22a)
o ) (ZgutZug) (22b)
aa R QIG aqtv

whence, holding « fixed at —0.1567,

(p_’ﬁ _ Z{Zya‘l‘Zan
daf; ( ) (23)

Zqﬂ+Z!Qﬂ+72R sin 27
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where Z and Z, may be obtained from table I.

The coefficient (3%/d¢); comes from the unsteady solution:

g) _ bx/be)
O¢/i  \Ok[On/s
From equations (7),
1
Ke='_"§ (ZcQw"I'Zgu)

which, upon substitution of equations (10), (15), and (18),
becomes

352
72R*

~,=—% (X-+17) —g—'+ sin 21 (24)

Equations (22a) and (24) thus provide that

% X '&‘I"Y <Y &L 35Z3 sin 217)
be) -

72R
At the bottom stagnation point, equations (21), (23),
and (25) apply, with subscript g replacing subscript 3.
Equation of vorticity shed at separation points.—Taking
into account the motion of the separation point, the rate of
vorticity shedding at the top is given by the following
equation, which replaces equation (6):

f<u sz)b'”' =t w1 2 7, (26)

From equations (3) and (21),

s5___p0m_ . o7
E——r 3= a(Raa_

25)
qun-l—zﬂgﬂ—i_ 72R SID- 277

H

———e(R
mtert(5), [+« @)+ G-

Equations (27) yield the following expression for the right
side of equation (26):

5 @it s [ Aa(323T) (328

S etURSY) | e8)

Expression (28) represents clockwise vorticity shed at the
top separation point. At the bottom separation point, the
amount of counterclockwise vorticity shed is also represented
by equation (28), if subscripts ¥ are replaced by s.
Therefore, equating the net discharge of vorticity to zero,

=% [(u});—(uf)£]+% A“l: az:: daj; abf gD :|+
(L)) Joo () -
<Ru‘g%>z:|}+ .

4306876—07 ——07

v

(29)

887

In the quasi-steady flow, (u;);=(w.),, and the coefficient of
Aa must be zero. Therefore, the coefficient of ¢ in equation
(29) must vanish:

RGN

or

) [ (G, G, 8
(30)

Equations (23), (25), and (30) and table I suffice to deter-
mine ¥ (which appears in eq. (25)). The result is,

¥=-—6.1 (31)

Definition of separation point.—In effect, it has been
assumed that, during tbe unsteady motion, separation is
defined by the condition of zero shear (x=—0.1567) and
the subsequent appearance of reverse flow relative to the
surface, just as in steady flow. This assumption is open to
question. The question is how (or whether) local velocity-
profile characteristics may be interpreted to identify the
leading edge of a wake.

The usual steady criterion, which notes the appearance
of reverse flow downstream of the point of zero shear, implies
that the fluid in the wake is fixed relative to the body. If,
in the unsteady case, the wake may still be regarded-as
fixed to the body, then it may be that the steady criterion is
still applicable.

However, the present assumption of the steady definition
of separation is not advanced with complete contidence.
Rather, it is felt that only a suitable experiment can settle
this point.

LIFT OF AIRFOIL

The steady lift coefficient of the airfoil of figure 1 is deter-

mined from the steady circulation:

ow— ﬂ Ul—27r(0 .0761)=0.48 (32)
U’(2l)
There are two contributions to lift proportional to e. From
the unsteady circulation,
Cf)=27v=—38.6 33)

and a further contribution is found by consideration of the
remainder of the potential low. The two components of
Kelvin’s impulse for the flow illustrated in figure 1 (leaving
circulation out of account) are

I, I,==mp UF(B® cos o, sin a)

(See pars. 71 and 123 of ref. 11.) Whence, the corresponding
components of vector force are

F,F=a& %=erl’a (—pB*sin ¢, cos a)

and the lift is
L=F, cos a—F, sin a=#plJ%

1+B <l+m§ cos 2a>
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The following lift coefficient results:

CP=3 (1-+87) (1+;g: cos 2a>=3.09 39

The final expression for lift combines equattons (32), (33),
and (34):

Co=CP+e(CR+CE)

al
=0.48—36 7 (35)

The sign of the second term of the result of equation (35)
indicates that, while angle of attack is increasing, the lift
is lower than the quasi-steady value, and higher if the angle
of attack is decreasing. Thus, near maximum lift, the lift
curve would exhibit a counterclockwise hysteresis loop
enclosing the stall point. This result is perhaps counter to
expectations, becanse clockwise hysteresis is found experi-
mentally for oscillating airfoils. It may be that different
directions of hysteresis should be expected when the airfoil
oscillates and when, as in the present study, the stream direc-
tion oscillates.

In any case, it may be shown that the overriding effect
producing counterclockwise hysteresis in the present prob-
lem is the quasi-steady movement of the separation point
over the top surface. As this separation point moves forward
under increasing angle of attack, clockwise vorticity in the
boundary layer joins the wake as the separation point passes.
Accordingly, a counterclockwise airfoil circulation (negative
v) is required to balance this effect. The term of equation
(26) that is concerned with this movement is the one in-
volving ds/dt.

For the elliptic airfoil problem treated herein, the quasi-
steady movement of the upper separation point is quite
extensive; numerically, 07/0a=13.9, indicating that the
separation point is very loosely fixed to the airfoil suface.
By way of contrast, in the case of the rotating circular cy-
linder, there is no effect of this sort, because a change in
angle of attack produces no quasi-steady movement of the
separation point at all. Other contributions to the shedding
of vorticity then lead to the result of clockwise hysteresis
for the circular cylinder.

LIFT HYSTERESIS

The foregoing analysis does not provide a complete theory
of unsteady flow about a stalled airfoil. Rather, the analysis
illustrates the considerations that would underlie such a
theory and further make plausible the general assumption of
an expansion of lift. coefficient in the form of equation (35).
This expansion would be valid for nearly quasi-steady condi-
tions. Also, it has been shown that a counterclockwise
hysteresis loop may be expected at & nominal condition of
maximum lift with, apparently, a large amplitude.

If the foregoing conditions are met, and A« is simple
harmonic,

Aa < sin 27wt (36a)
then

& o< —27w sin (2rwi—90°) (36b)
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Use of relation (36b) in the lift formula (35) may be said to
correspond to the assumption (ref. 5) of a positive lift-
curve slope and a phase lag, 90° in this case, though the
positive slope would not correspond to the steady lift curve.
The hysteresis loop for this case appears as an ellipse on the
Iift curve of figure 6 (a). The amplitude and width of the
loop are assumed small in the present discussion and are

- exaggerated in figure 6.

If « is not simple harmonie, then the concept of phase lag
is altogether inappropriate. For example, if « is8 more
nearly a ‘‘saw-tooth” function of time (fig. 6 (b)), then the
Iift increment is nearly a ‘battlement’”’ function. The
corresponding hysteresis loop is nearly rectangular. If «
changes according to an exponential pulse (illustrated by a
Gaussian curve in fig. 6 (¢)), then the hysteresis loop is
egg-shaped, with the broad end to the right.
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Fraure 6.—Variation of lift coefficient and angle of attack with time
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CONCLUSIONS

The analysis of rotating stall in an axial-flow compressor
requires specification of a dynamie lift curve applicable
near stall. It has previously been suggested that unsteady
lift hysteresis is an important characteristic of such a curve.

Consideration of the familiar experimental fact of Magnus
lift on a rotating cylinder indicates a theoretical approach
to the question of aerodynamic hysteresis which, "though
certainly not definitive, may prove helpful. The accepted
explanation of Magnus lift is that, if the cylinder is in motion
toward the left and rotates clockwise, the movement of the
surface delays boundary-layer separation on the top and
advances it on the bottom. In steady flow, considerations
of constancy of wake circulation require that the outer
velocity at the two separation points be equal. The de-
lnyed separation at the top implies & lower velocity (vice
versa on the bottom), and a2 compensatory clockwise circu-
lation must therefore occur.

The foregoing reasoning is extended to apply to the prob-
lem of an airfoil of elliptic section in a stream of constant
velocity but of (slightly) oscillating direction. The airfoil
is considered to be nominally at maximum lift. This
assumption, reasonable for unsteady problems at nearly
stalled conditions, provides an essential simplification. To
first order in small quantities, the lift (circulation) increment
due to the oscillation can depend only on rate of change of
angle of attack; and, just as in the cylinder case, all induced
wake effects may be ignored.
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For purposes of computing the amount of vorticity shed
into the wake, the separation point is identified as the point
of vanishing shear, just as in steady flow. It is not clear,
however, that this assumption is proper.

Under these various assumptions, the unsteady increment
in lift coefficient of the ellipse is found to be —36 «/U, of
which about 92 percent is due to the unsteady movement
of the separation points and the remainder is due to impulsive
pressure. This lift increment gives the amplitude of a lift-
hysteresis loop at maximum lift. The loop is counterclock-
wise, a result that can be related to the extremely migratory
tendency of the separation point on the upper surface of the
ellipse under a change in angle of attack in steady flow.

Finally, assuming oscillations of low reduced frequency,
certain observations may be made concerning the shapes of
hysteresis loops, and the validity of the idea of a viscous
time lag in connection with unsteady lift: If the angle of
attack undergoes harmonic oscillation, then the lift incre-
ment is also harmonic with a 90° phase lead or lag, depending
on the sign used in the definition of ;. In this case, the
hysteresis loop is elliptic. If the angle of attack varies in a
nonharmonic manner, then the variation of lift does not
have the same dependence on time, and the idea of time lag
is inappropriate.

Lewis FrigaT ProrurLsioN LABORATORY
NatioNaL Apvisory COMMITTEE FOR AERONAUTICS
CreveELAND, OnI0, August 17, 1956



890

REPORT 1291—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

APPENDIX

SYMBOLS

The following symbols are used in this report:

A4, ¢ functions of 4 (eqgs. (7))

B, b functions of 5 (egs. (9))

C, ¢ functions of 5 (egs. (19b))

Cr lift coefficient

rate of change of lift coefficient with angle of attack «

rate of change of lift coefficient with &

d function of 3 (eq. (20b))

F universal funection for boundary-layer -calculation
(eq. (5a))

h universal function for boundary-layer calculation

(eq. (13))
lift

L

l semichord of elliptic eylinder (fig. 1)

n coordinate measured normal to surface (egs. (6), (36))

q dimensionless outer velocity, ==u,/U

R function of 5 (eq. (3))

8 dimensionless coordinate measured along surface of
ellipse (fig. 1)

t time

U stream velocity (a constant)

© velocity parallel to surface

1% function related to unsteady boundary layer (eq.
(15)),=9¢Z.

X function related to unsteady boundary layer (eq. (18))

z Cartesian coordinate of surface of ellipse

Y function related to unsteady boundary layer (eq. (18))

Y Cartesian coordinate of surface of ellipse

VA function related to momentum thickness of boundary

U

0
layer (eq. (5&)),=7

angle of attack

time rate of change of «

increment in angle of attack, =a—a®
thickness ratio of elliptic eylinder

circulation in outer flow

coefficient of hysteresis in circulation (eq. (10))
over-all thickness of boundary layer
displacement thickness of boundary layer
dimensionless angular velocity, =a&l/U
coordinate on surface of ellipse (fig. 1, eq. (2))
momentum thickness of boundary layer
function for boundary-layer calculation (eq. (52))
kinematic viscosity coefficient

density

skin-friction coefficient

velocity potential

frequency

e-sqb:a':::mc;m..gﬁugg.g

Subsecripts:

3,8 evaluation at top or bottom separation point, respec-
tively, of steady flow at maximum lift (a=a®,
e=0) .

0 evaluation at forward stagnation point, where ¢=0

1 evaluation at outer edge of boundary layer

- evaluation at lower separation point

Subscript notation is used for partial differentiation where

convenient.

Superscripts:

(0) steady conditions at maximum lift

(1) unsteady contribution due to movement of separa-
tion points

(2) unsteady contribution due to impulsive pressure

- evaluation at upper separation point

d denotes ordinary derivatives
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TABLE I—RESULTS AT SEPARATION POINTS

Separation point (~=-—0.15667)
Quantity

Top (3) Bottom (1)
7 80. 0° 340. 83°
R 0. 985 0. 364
q 1. 210 —1. 204
0y 0. 139 0. 137
Gz 1. 192 —7.95
%, —0. 0062 1. 49

111 0. 41
Za 13.3 —b5.6
Z —1. 405 0. 52
X —55.6 —5. 4
Y 49 —4. 2




